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Abstract

In this note two characterizations of the exponential distribution are

discussed, based on a generalization of the lack of memory property. These

results were motivated by the notion of "relevation of distributions"

! : introduced by Krakowski (1973).

Key words: exponential distribution; characterization; relevation; convolu-
tion; power series expansion; Laplace transform; non-negative random variables;

| replacement procedures.

1. Definitions

If the random variables Yl,Y2 with survival distribution functions (SDF's)

PriY;>t] = S;(t) (i=1,2)

(with Si(O) = 1) are mutually independent, then the SDF of T = Y1+Y2 is




t
Pr(T>t] = S,(t) - é S, (t-x)ds; (x) . (¢))

This is the convolution of Sl(t) and Sz(t).

1f, now, we think of S1 (t) as the SDF of an item placed in service at time
t =0, and Sz(t) as the SDF of an item placed in storage at time t = 0 and
chosen independently from survivors in storage to replace the first item when
it fails, then the SDF of the time of failure (T') in service of the second
item is

t
Pr(T'>t) = $y(8) - [ [5,()/5,(0188; () - @)

The first term on the right-hand side corresponds to survival in service

of the first item; the second, to failure of the first, followed by survival
of the replacement till time t. Formula (2) was given by Krakowski (1973)
who termed it the relevation of Sl (t) and Sz(t). Note that, in general, the
relevation of Sl(t) and Sz(t) differs from that of Sz(t) and Sl(t). For
convolution, however, there is no difference.

We can write T' = Y1 + Yé where Y1 is the failure time of the first item,

and Yi is the time in service of the second item (from replacement to failure).

2. Relevation and Convolution
1f Yi were independent of Yl, then the relevation of Sl(t) and Sz(t) would
be identical with their convolution. This will certainly be so, whatever

S, (t) be, if Sz(t)'- exp(-At) with A > 0. It will also be so, if S;(t) corre-
sponds to a discrete distribution taking only positive integer values, and

Sz(t) corresponds to a geometric distribution with

Pr(Y,=n] = (1-6) o™l (n=1,2,...) .

{
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This is because this distribution has a 'lack of memory' property
-1 n-1
P(Yz-t*n|Y2>t) = (1-8) ~ o = P(Yz'n) (t,n=1,2,...)

(since P(Y,>t) = (1-0) " 6%(1+6+.) = 6% and P(Y,=tn) = (1-6)"! ot*21)
analogous to that of the exponential distribution.

We will show that if S,(t) is not only continuous but can be expressed in
the form of a power series

S,(t) = 1 + j:fl a ¢ (3)

then relevation and convolution of S1 (t) and Sz (t) are identical only if
Sz(t) = exp(-At). We do this by taking the special case Sl(t) = Sz(t).

We firSt note that since Sz(t) is monotonic and bounded, (3) implies that
(i) the probability density function (PDF) is

GO @/t = ] ey

and (ii) inversion of summation and integration over [0,t] with t finite is
justified.

Identity of relevation and convolution requires that the right hand sides
of (1) and (2) be identical, that is

[§ 8,185, () = §,(8) [§ {5,071 as, (x). 0
In the special case Sl(t) = Sz(t) = S(t), say, this implies
| ]3 S(t-x)dS(x) = S(t)logS(t). (5)
If (3) is valid, then

-1<j:ilajtj<0fort>0




and (with ao-l)

© i-1 o 2 o %
sityregs(t) = (§ LW ¢ t* iy )
Ko 121 > k-z-l s jzo % (6)
P t8 SR Eoaiiek R
821 ugl gu w2z m-_l*l%lz'u mom, 3 mlﬂglzﬂns-u a"’l am2 “ms !
m.>1 m.>1
The left hand side of (5) equals
fswase = fas Jaen § om, t
- T D (ebay ey Bael g @

h=0 j=0
7 5 e Hwdigit e § 8 ] (
= t + B s +1,g-h) = t pa a__ B(u,g-u+l).

Bmn) = [1 ™1 @-0"" dx is the beta function.)

The coefficients of 8 in (6) and (7) must coincide. For g=1 we obtain only
the trivial condition a; = a, and we are free to select this coefficient
arbitrarily. By equating the coefficients of tz, we obtain a, + kai =

A ai +a,, which is identically satisfied for all choices of a; and a,. For
g=3 we obtain a, = _a; . In general, for g>3, the equality of the coefficients

of t& in (6) and (7) yields

- * ewn = *i0e oo
B Medpns VR RS et 0 AT
“12.1 mi_>_1
=g ag B(g,1) +. (g'l)ag-l al B(g-1,2) +...+ 8 ag-l B(1,g) . (8)

Here the dots stand for terms that contain only coefficients with subscripts
less than g-1. By using also the identities gB(g,1) = gB(1,g) = g(g-1)B(g-1,2)=1,

the second member of (8) reduces to a + (Zallg)ag_l + h(‘v‘z'"'-‘g-z)'
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I1f we assume that, for a given choice of a, # 0, we have already determined

az,...,ag_z then (8) yields

ag + ag_l L al L ag » (hllg)ag_l + h(al’oco’ag-z),

where h(al,...,ag_z) is a certain polynomial in the known quantities

al"“’ag-Z’ It follows that

8 85, (1-(2/g)) = h(ay,...,a,_,) )

g-2
and (9) (with g=3,4...) yields unique values for the coefficients ag, g>2.
In fact, once we know that, given a, ¥ 0, (9) leads to unique values for all
coefficients of (3), we do not havento determine these coefficients recur-
sively by (9). Indeed, with a = ;-}- ,» S(t) becomes et and satisfies (5),
as well as S(0) = 1. Finally, the conditions -S'(t) = f(t) >0 and

[5 £(t)dt = 1 require that a = -1 < 0, so that S(t) = e ' is the unique

solution with a = S'(0) = -a.

3. Remarks

Although we have established that the exponential distribution
S,(t) = exp(-At) is the only SDF which makes (1) and (2) identical for qll
Sl(t), among SDF's which can be expressed in power series, there are at least
two more general results which, one feels should be valid.

(i) The power series expansion condition could be weakened to require only
that Sz(t) is continuous (and perhaps with a continuous derivative).

(ii) It should be possible to show that under the conditions in (i), if
sz(t) is not exponential, there is no 81 (t) for which relevation and convo-
lution are identical. We defer a discussion of these matters to a future

paper.
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4. Averaged lack of memory property

In a number of papers devoted to characterization of exponential distri-
bution by spacings and order statistics, Ahsannulah (1976-8) investigated

variants and extensions of the following equation:
f5 £ BPErA - S(2))dx = 0 for a1l z > 0. (10)

One interpretation of this equation is in terms of a weighted (or averaged)
lack of memory property, the weight function being the underlying PDF f(-).

Another interpretation (in terms of relevations) is that the time in
service of the second item (i.e. from replacement of the first item to
failure of the second) has the same distribution as the lifetime of individ-
ual items chosen at random at time zero. It does not ensure that time in
service is independent of time of starting in service (i.e. of failure of the
first component). Of course, if the latter is true it is obvious that this
ensures that distribution of time in service is the same as distribution of
individual lifetimes (and indeed it ensures exponentiality).

Ahsannulah derives an exponential solution for these types of equations
under the restriction that the underlying density possesses a monotone hazard
rate. We shall prove the existence of a unique exponential solution for (10)
without any assumptions except the existence of a density f(-) for the SDF S(-).
In fact the following result is valid:

Theorem 4.1. If

fof00 EFK - s@ax =0 an

then S(x) = e ™ for same A > 0, and £(x) = Ae X,
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Proof. a) If S(x) = e”‘x, then the large bracket in (11) vanishes so that

X

the functions S(x) = e "X are solutions.

b) To prove the converse, let S(x) be any solution and let A be an arbitrary
positive number. Set g(x) = e Ax S(x), so that S(x) = e * g(x). By substi-

tution in (11), we obtain, after routine simplifications

f3e002) - By e ax = g(a) 1z)

The right hand member can be written as A [g g(2) e ™ dx and (12) is

equivalent to
fo Metra) - g(2)) - BEZL g () e ax =0 . (12)"
Set
Wx,2) = 3 g“;’ g' (u)du . (13)

We observe that: (i) y(0,z) = 0 for every z.

(ii) since lim S(x) = 0, g(x) = o(e™) .

X0
(iii) from the monotonicity of S(x),

uwz) _ Az S(utz Az
iGa = SR <t

From this it follows, in particular, that

wx,z) = [ Brs g'idu <AG) ff g'(Wa

= A(z)*(g(x) - g(0)) < A(z)g(x)

with A(z) = lim sup B(B*Z) . A2
W

g(z
and
-)x -Ax
:1:3: e ™ v(x,z) _<_’1ti_: {A(z)g(x)e ™7} = A(2) ,1(..1: S(x) = 0. (14)




From (12)' we now obtain, by integration by parts and by use of (13) and
(14),

A [ (g0e2) - g(2)) e dax = A f§ wlx,2)e ™ ax.

For A # 0, using the uniqueness of the inverse Laplace transform and the

continuity of the functions y(x,z) and g(x),
glx+z) - g(z) = v(x,2) .

Differentiating with respect to x, and using (13):

gl (x+z) = 2*%1—5). = gx;z gl (X) .

whence

'(x+z) _ g'(x
gxvz) g(x)

for every z. It follows that ; :

is constant, equal to c, say, where
log g(x) = cx+d, g(x) = ae“ and so the most general function S(x) is of the form
S(x) = e ™ gx) = #e' (A-e)x

Since S(0) = 1, a = 1; and since S(x) 0 as X +® , y= A -~ c > 0. Hence

S(x) = e ¥, u>o. a

5. Concluding Remarks

We conclude by noting that two methods of solving characterizing equations
for an exponential c.d.f. were utilized in this paper. The first is a power
series expansion and the second is a Laplace transform representation. To the
best of our knowledge, 'neither one of these methods has been previously utilized
in deriving characterizations of exponential distributions, of the kind considered
in this paper. 'This fact may lead to some additional characterizations qf this
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distribution as well as to alternative proofs of existing characterizations,

possibly under milder assumptions.
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